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Diffusive evolution of stable and metastable phases. I. Local dynamics of interfaces
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We find analytical solutions to the Cahn-Hilliard equation for the dynamics of an interface in a system with
a conserved order parameignodel B). We show that, although steady-state solutions of m&lake un-
physical in the far field, they shed light on the local dynamics of an interface. Exact solutions are given for a
particular class of order-parameter potentials and an expandable integral equation is derived for the general
case. As well as revealing some generic properties of interfaces moving under condensation or evaporation, the
formalism is used to investigate two distinct modes of interface propagation in systems with a metastable
potential well. Given a sufficient transient increase in the flux of material onto a condensation nucleus, the
normal motion of the interface can be disrupted by interfacial unbinding, leading to growth of a macroscopic
amount of a metastable pha$81063-651X97)03811-1

PACS numbg(s): 05.70.Fh, 64.60.My, 05.70.Ln, 64.60.Qb

[. INTRODUCTION As explained in Sec. IIK is the square-gradient coefficient
in a free-energy expansion, which treats the order parameter
The kinetics of phase ordering is a central topic in non-p as slowly varying]" is the mobility. Note that in principle
equilibrium statistical physics. Much of our understanding isCahn-Hilliard theory can accommodate an arbitrary form of
based on theories that describe one or more slowly varying(p), which is the free-energy density for a homogeneous
density (or order parametgvariables, governed by a local State.(In particular, it does not assume tiais a polynomial
Langevin equation1]. In general, the density varialggy N the order parametqr, as would be assumed_ln the time-
evolve(s) systematically in response to a driving force, which dépendent Landau-Ginzburg theory of dynamics close to a
is a derivative of the underlying free-energy functional, with ¢'itical point[5]) Indeed, the approach should be qualita-
some mobility(characterized by the Onsager mari@n top tively applicable even if (p) consists of the lower envelope
of this are noise terms whose magnitude is fixed by requiringgf several unrelated functions representing phases of differ-
that the Boltzmann distribution is a stationary state of the nt symmetry. The free energy near a liquid-solid transition

: . of this form, for example, witlp the material density. This
dy”am'cs- The ngturg of the.Onsa'g'er mobility deper)d_s O#:fssumes only that, whatever other order parameters distin-
the kind of ordering involved; specifically, we must distin-

. uish the various phasdsuch as crystallinity these can
guish conserved order parameters from nonconserved on

in th q he density | - h Jax quickly and hence the rate-limiting process for the
n the conserved case, the density In some region can changg,se ordering is transport pf It is conventional, in Eq(l),

only by diffusive transport across its boundary; its time de-, treatk as a constantindependent op). We do this in
rivative is therefore the divergence of a current. This is notynat follows, although it might be a dangerous assumption
the case for nonconserved order parameters, which canenf is a composite function as just described. With this
change locally in direct response to the driving force. caveat, Eq(1) will be relevant at long times and large dis-
The low-temperaturgnoise-fre¢ limit is usually consid-  tances if the other order parameters are nonconserved.
ered appropriate for the study of phase ordering kinetics, in |n this paper, we therefore consider the phase-ordering
which a system is prepared far from equilibrium and thenproblem for relatively general forms dfp), wherep is a
allowed to evolve. For example, a uniform high-temperatureoncentration variable. We assume this isdhé conserved
phase can be quenched into a region where it is either locallyrder parameter, thereby ruling out systems with significant
or globally unstable with respect to separation into two macgoncentration deviations in more than one species and also
roscopic phases. Local instability leads to spinodal decomryling out consideration of heat transport. This latter restric-
position[2]; if the system is locally stable, phase separationtion might be severe in, say, metallurgical applications, but
proceeds by a nucleation and growth mechanii8inin ei- ot for soft condensed matter syste(ssch as colloidal sus-
ther case, the governing equation for phase separation of gensiong which are our main interest. Indeed, for many
conserved scalar order parameter is the Cahn-Hilliard equay,ch systems the latent heats of phase changes are entirely
tion [4] negligible[6].
Our work is motivated by the desire to understand better
the role of metastable phases in the kinetics of phase sepa-
&—p=V~<FV[ﬁ— KV2 ]) (1) ration. That such a role exists has been long acknowledged:
at dp Pl For example, the “Ostwald rule of stage§7] asserts that a
system will progress from an unstable to a stable state, not
directly, but by a sequence of steps through any intervening
*Electronic address: r.m.l.evans@ed.ac.uk metastable states that may be present. In the area of metal-
"Electronic address: m.e.cates@ed.ac.uk lurgy, there is an extensive folklore on the subjegit Here
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we aim at a more fundamental understanding, based on raature of thelarge perturbation required to cause splitting.

direct analysis of the Cahn-Hilliard problem. For the mostSection VIl summarizes our conclusions. Appendix A pro-

part, we work in one space dimension. vides some details of the exact solution for the piecewise-
Specifically, we shall focus osteady-state solutionsf ~ quadratic case, whereas in Appendix B we derive an exact

the Cahn-Hilliard equation, in which interfaces betweenintegral representation of the steady-state solution for general

phases move with constant velocities. This approach appeap9tentials, thereby confirming and extending some of the

at first paradoxical, since the diffusive nature of the transporgarlier results.

rules out true constant-velocity solutions when conserved or-

der parameters are presefilndeed, the basic scaling of Il. THE CAHN-HILLIARD EQUATION

Iengthg in difoSi.V e transport is \.Nithllz’ whereas constgnt Consider a system characterized by one conserved, scalar
velocities WOl.Jld .|r.nply Ilnear_scalllngu.sHowever, as we dis- orger parameter, such as local mass density, in a part of the
cuss later, significant physical insights can be gained by,qe diagram where two-phase coexistence is the equilib-
\k/)IeWIdr}g the mterfgf:lal mo|t|o_n ‘"‘]‘CS a quasisteady dpr((j)cess._ ium state. If the system is far from criticality and is initially
roadly comparablé analysiS or nonconserved dynamicg,+ of equilibrium, then its evolution towards equilibrium
(where true steady-state motion is possiliias been given obeys modelB, described by Eq(1) (the Cahn-Hilliard
recently by Bechhoefer and othef8-11]. These authors equation, which is derived as follows. Let the free energy of

showed that under sufficient supercoolif, equivalently o system be a functiong[ p] of the order parametgr().

in a ferromagnetic system, with s_uff_icient applied fietde Then the chemical potential is defined by the functional de-
interface between two stable coexisting phases could beco Rative

dynamically unstable toward “splitting.” The splitting insta-
bility results in a macroscopically thick slab of a metastable SF
phase appearing between the two stable phases, which can m=
then grow. p

One of the main questions we address here and in th@ i ;
; . e . "'Cu can thereby depend on gradientspofas well asp itself).
following paperf12] is whether the same scenario is poss'bleCurrents in modeB are induced by gradients of the chemi-
for the conserved-order-parameter case. In this paper wg, potential

show that, although there is no mathematically direct analog

of the splitting instability found by Bechhoefet al., a suf- j=-TVu,

ficient transient flux from the less dense to the more dense

stable phase can indeed cause interfacial splitting. We als@here the constant of proportionality is the Onsager mo-
argue that the split mode will be maintained so long as theility, which may be a function op. Since the order param-
supersaturation of the less dense phase is sufficiently largeter is conserved, its time derivative is given by a continuity
In the following papef12] we study the long-time limit in  equation

which the interfaces become sharp on the scale of their sepa-

ration and give a more detailed discussion of the critical ap .

supersaturation required to sustain the split mode at long E:_V'J'

times. That paper also contains a discussion of experimental

evidence, involving colloid-polymer mixturegl3], which Let the free-energy functional be of the form
suggests that the onset of the split mode might be connected

with the observation of arrested crystallization, beyond a

threshold of supersaturation, in the trgnsition froma c)élloidal F[p]:J d{f(p)+ 2K(Vp)?).

fluid to a colloidal crystal. A brief account of these ideas is

given in[14]. The form of the bulk free-energy densitfor “order-

The rest of this paper is organized as follows. In Sec. llparameter potential’f and the value oK are system de-
we recall the Cahn-Hilliard equation and discuss the condipendent. Let the system in question be initially homogeneous
tions under which a one-dimensional treatment should sufat a nonequilibrium value op, between two minima irf,
fice. In Sec. Il we formulate the quasi-steady-state form ofi.e., within a two-phase coexistence region of the phase dia-
the Cahn-Hilliard equation, paying careful attention to thegram. For definiteness, lgt be initially close to the low-
boundary conditions that are required to make the solutiomlensity minimum inf. Small fluctuations initially induce the
physically meaningful. An exact solution is described for aevolution ofp towards equilibrium. Early stages of the evo-
piecewise quadratic potentié{p), with piecewise constant lution proceed by nucleation, if is convex at the given
mobility. In Sec. IV we describe in more detail the propertiesvalue of p, or by spinodal decomposition, if concave. This
of the solution, focusing on the case whdig) shows a stage of the dynamics is not addressed here. By whatever
metastable minimum of intermediate density. We argue thaprocess, domain wall§nterface$ soon form. If surface ten-
there is no critical velocity above which the interface be-sions are neglectedegitimate when typical interfacial radii
tween stable phases ceases to have a steady-state s@Ghutionof curvature are large, which we assumthe subsequent
contrast to the nonconserved casad in Sec. V we show motion of a wall is driven by diffusion from the far field. The
explicitly that such an “unsplit” mode of interface motion is local profile of the wall changes on a shorter time scale than
linearly stable. In Sec. VI, however, we show that a splitthe far-field gradients that determine the flux onto the wall,
interface, should one arise, can also be dynamically stableimply because of the difference in length scales: While typi-
under appropriate conditions. We discuss qualitatively theal distances between interfaces are proportionalt'fpthe
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characteristic width an interface remains of the order of p
JKI(d?f/dp?) at all times. Therefore, although typical inter- P oo
wall distances vary with time, intrawall dynamiésoncern- Interface

ing the local density profile of an interfagesoon become

approximately steady state, with a quasiconstant input flux.
Theselocal interface dynamics are concerned with the Driving Region Goas Stoady Ste Region

movement of a@— 1)-dimensional wall in al-dimensional —

space, translating normal to itself. Hence, if curvature and

surface-tension effects are ignored, the problem becomes one FIG. 1. Schematic diagram of the system. Densitis plotted

dimensional; the Cahn-Hilliard equation then reduces to ~ against distance. On the right-hand side of the figure, a high-
density domain has formed, for whigh— p., ass— +. On the

dp 9 g df azp low-density side of the interface, the region for which the quasi-
—=— ) —| —— — steady-state approximation holds meets the ‘“driving region,”
gt ax x| dp X which becomes depleted as material condenses onto the interface.

In the next section, we show how to find steady-state solu- ] ) -
tions of this equation for a piecewise-quadratic potential. choice and interpretation of these boundary conditions are
not trivial; we discuss them carefully before proceeding fur-
Il EXACT STEADY-STATE SOLUTION ther. The case of inter_e$depicted in Fig. 1is Where a
region of the high-density phase has formed and is growing
Let us transform to a frame moving at velocity in by condensation from the supersaturated low-density phase.
which the position coordinate is (Note that, throughout this paper, the high-density phase is
depicted on the right-hand side of the diagrams and therefore
grows by leftward motion of the interface. The opposite con-
vention is adopted in Ref§12] and[14].) The interface is to
aPe modeled in isolation, so the high-density phase is semi-
infinite. Two boundary conditions arise from this: The den-
sity (and hence chemical potenliabsymptotically ap-
proaches a constant valye ass— +», say, and the flux
asymptotically approaches zero in this limit. We may now
p' (2)  either regard in Eq. (2) as a given constant and then, from
integration, deduce the conditions at the other boundary or

which is a third-order ordinary differential equation jri may be seen as an eigenvalue that is set by further boundary

(=dp/ds). If T andf, are both independent gf then the conditions. In any case, at the second boundary a flux is
right-hand side vanishes and the left-hand side becomes lif€duired(to induce motiopand this implies a gradient in the
ear and homogeneous . So the problem igat least chemical potential. Hence it does not make sense to put this
piecewise soluble for a piecewise-quadratic poterfia), boundary as— — o0, asu would be infinite here; instead the

with piecewise-constant mobility. Such a model is actually Ief_t-harld bound?ry r_mrJ]St bte f\tksotrrr:e tfr']n'te %05'“0’?- Th'.st
fairly versatile and we therefore explore it in detail. raises two guestions. how 1o take the thermodynamic fimi

At discontinuities in our piecewise constaiit and/orT, f':lrt]d hov: ttc_) ﬂn(tjhstteady—lstate t.:,]olutlog.?f_m ﬁ.f'n't.e syst;arn. The
the solutions for the separate pieces must respect cert erpretation that resolves these difticuities IS as Tollows.

matching conditions. Specifically, the current must be con—f € Ieftc-jhand bouqﬂa;[]y IS ?t ? fm'tlet .dlstatn.ceffr(?[rphthec;nter—f
tinuous so thatV-j remains finite, the chemical potential ace and moves wi € Intertace. 1t Is not In fact the edge o

must be continuous to avoid infinite currents, and continuity{he system, but simply the point at which the behavior ceases

of the gradient ofp is required to avoid infinities in the ° be quasi-steady-state. The part of the system to the left of

chemical potential. These three conditions are sufficient t .h's boundary, which does not solve the steady-state equa-

fix the constants of integration for the above third-orderrlgsn’Omng%lgef(;?fsejredl tl(r)1 a?hg]euggi\égr?s[aer?tlofﬂjx zlr?gecge;;i-
equation inp’. Subsequent integration to fipdgives rise to b PPIyINg q

an additional arbitrary constant, which is fixed by demandin cal potential to the propagating interface, by non-steady-state

continuity of p itself. The full solution is given in detail in gd_|ffu3|ve depletion of materlal._ln summary, a specific SOIUT
. ) ; . ! tion to the steady-state equation is fixed by the asymptotic
Appendix A. For each piece of the potential, this solution has . o
the form value of p in the limit s—+ and by the values of the
chemical potential and flux at sonfeather ill-defined posi-
tion to the left of the interface, where the steady-state region

3
p'(s)=2, A;e”ss, (3)  meets the driving region.
j=1

sS=x—ut,

and introduce the notatioh,(p)=(d/dp)"f(p). Demanding
that the time derivative vanishes in this frame, we find that
steady-state solutiom(s) to the Cahn-Hilliard equation,
traveling at velocityv, satisfies

' fz v f3 , 1 dF

_conm_ o __° 2+__ f2
PP kTP "K? "Tdp

L _m
KPP

where the constantd; and w; depend orf,, K, I', andv.
In addition to the matching conditiofmg/hich fix some of

the constants arising in E(B) from the division off(p) and One important qualitative observation, noticeable on

I'(p) into piece$, boundary conditions are required to selectgraphs(such as those discussed in Sec. Y& the exact

a specific solution to the differential equation. The correctsteady-state solution calculated in Appendix A, is that the

IV. PROPERTIES OF THE SOLUTION
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f(+1) to be equal[This choice involves no loss of gener-
p,=-0.50 f ality since, as is well knowfil5], adding a linear term to the
i g;z free-energy densityf(—f+ap+b) has no effect on the so-
h=0.007 lutions of the Cahn-Hilliard equatiohSteady-state interface
profiles for this system are given in Fig( for v=0 (i.e.,
the equilibrium wall and in Fig. Zc) for v=—0.0XT. In
0.1K each case the mobilit]/ is constant throughout the system.

1 Negativev solutions are of greatest interest since they de-
scribe the condensation of material from a supersaturated
region onto a growing domain and are therefore central to

h phase-ordering dynamics. Notice that both solutions shown
R P. Py 1 P have an inflection at the density of the metastable phase 2.
Without forming amacroscopicamount of the metastable
b P 3 phase, the interface takes advantage of the local minimum in
Vs free energy by having extra material at this density. Region 2
S590E is noticeably narrower in Fig.(2) (for condensationthan in
' 0 s Fig. 2(b) (the equilibrium profile.

B. Existence of solutions for an unsplit interface for allv

C p 3 We are interested in whether such a steady-state interface
pe=m might split into two parts, the 1-2 part of the interface propa-
AT : gating faster than the 2-3 part, analogously to the “dynamic

| o s splitting instability” [9] that can arise in the dynamics of a
» nonconserved order parameter in a three-well potential. In
the nonconserved case, a critical velocity exists, above which
there exists no steady-state solution for the propagation of a

K ) ) 1-3 interface; instead a macroscopic amount of the meta-
which all relevant parameters are given. Well 2 is metastdbje.

stable phase ghustbe created between a pair of movifig2
Density profile of an equilibrium interface for the above potential. b P g

Regions are labeled in which the density corresponds to wells 1, fnd 2-3 mterfaces. .
) . . . . In comparing the conserved and nonconserved dynamics,
and 3 of the potentialc) Density profile of an interface moving at

velocity —0.0XKT" for the same potential and constant mobility however, an important distinction ShO.UId be bome In mlnd:

Notice that region 2 is narrower than in the equilibrium case. In the nonconserved Case_, the Ve_IOCIty of ea(_:h interface is
controlled by an external field, which adds a linear term to

the potential(Indeed, to obtain a dynamic splitting instabil-

. ) o . ity in the nonconserved case, the field must cause the poten-

speed of condensatidor equivalently the incident fluxin- 2, the middle well to fallbelowthat of one of the others.

creasesIn Appendix B, it will be shown, to first order in, |5 the conserved case, however, linear terms in the potential
that this is a generic result. A second qualitative result, founqﬂe irrelevant; instead, the velocity is controlled by the
below (Sec. IV B), is that steady-state solutions exist at all ), nqary conditions. We now present an argument showing
velocitiesv. This holds even when an intermediate meta-ihat the unsplit propagation mode exists for all velocities in

stabl_e well is present in the order-parameter potential; acig case(The argument isiot limited to the case of piece-
cordingly (and in contrast to the case of a nonconserved Ofyise quadratic potentials.

der paramete[Q]), th_ere is no critical velocity above_ Wh_ich First, note that Eq(2) may in principle be integrated spa-
the interfacemustsplit. Both of these results have implica- tially, from right to left, for a givenv and p.., to find the
tions for the formation of metastable phases. value ofp at any point. This could fail to produce a solution
for a three-well potential, only if the resultant profitgs)
A. Form of the interfacial profile _fails to span all three W(_ells due to the presence of a mir_limum
. . i ) in the functionp(s). This would occur whenever the given
Before discussing splitting, we show some typical nu-5,e of, was above the critical value. However, such turn-
merical results for a steadily moving interface, in a systemng points inp(s) do not arisein the steady-state solutions.

Wh_ere a metasta_ble phase is possible. Cons'deF a systemlis follows from the expression for the chemical potential
which f(p) contains a metastable well at a density between

FIG. 2. (a) Piecewise-quadratic three-well potentidlp), for

characteristic width of the interface alwaglecreasess the

that of the growing high-density phase and the supersatu- df(p) #p
rated low-density phase. A piecewise-parabolic form for ,u=d——K—2.
such a potential is shown in Fig(&. (Metastability requires p IX

that the middle well isabovethe common tangent to the

other two wells) Let the low-, intermediate-, and high- To see why, consider first the equilibrium interface profile,
density wells be referred to as 1, 2, and 3, respectively. Wéor which n is a constant. Clearly, this spans all three wells.
may define the order parameterchosen as a scaled, rela- Any solution of negatives (describing condensatipmmust
tive density to be=1 at the minima corresponding to phaseshave a higher chemical potential than the equilibrium value,
1 and 3 and take their free-energy densitfds-1) and at any given point on the interface whepe<p,,, because
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there is a steady flux onto the high-density phase. Hence, for P
any given value op, it follows from the above expression L
for u that the curvature gf(s) must bemore negativehan .
for the equilibrium profile. So no minimum exists p(s).

This argument also holds f,, is greater than the equilibrium
value since there is still no minimum to tlhe=0 solution in

this case. The argument may even be extended to the case
where p,, is below the equilibrium value so that the=0
solution exhibits a minimum. So long as this static solution ‘ L
spans all three wells, negativesolutions with the same as-
ymptote must also do so since their curvature at any given
value ofp is more negative. Hence there is no critical veloc-
ity for condensation.

FIG. 3. Density profile of a steadily moving interfa@®lid line)

and the result of a perturbation in the direction of the arrows
(dashed ling which has increased the width of the region occupy-
ing the metastable middle well of the potential. The result is a more
V. STABILITY OF THE SOLUTIONS negative curvature in the position labeladand more positive cur-

Having established thexistenceof solutions correspond- VatUre atB.

ing to unsplit interfacial propagation at all velocities we
now show that these solutions are stable against linear pe
turbations.[The argument belovis restricted to piecewise
guadraticf (p).]

Let the fieldp(x,t) obey the full Cahn-Hilliard equation
of motion and be written as

stable when all continuous parts of the potential are convex
fas is the case, for instance, in the potential of Fi@)]2

Furthermore, in any concave part of the potential, solutions
are stable with respect to perturbations of shorter wavelength

de d

I
ot ox| " ax

oX

I
ax

Po

For the exact solutions calculated in AppendixfA,andT’
are both piecewise constant. It follows that, on any piece of
this solution, a small perturbaticnabout the solution obeys

than 27K/—f,. Hence, so long as the spatial distance over
is obviously true that the equilibrium interface profile satis-
densation, to bearrowerthan the equilibrium interfac@nd
1%
-—| T
e
0 Although this completes the argument, it is useful to have
92 moving interface for a potential with a metastable middle
p rather than vice versa. The perturbation shown is tending
the linearized equation of motion the curvature more negative on the part of the interface la-

which the interfacial profile spans a concave part of the po-
p(X,1)=po(X,t) +&(x,1), tential is less than 2K/ —f,, the solution will be stable. It
wherepg(X,t) is a solution of the steady-state equation and fies this linear stability criterion. As stated previously, we
is initially small. Differentiating with respect to time gives have observed solutions, for interfaces moving due to con-
proved it to first order irv in Appendix B; hence they too
are linearly stable.
where a conceptual picture of the mechanisms giving rise to this
stability. Consider once more the profile in FigicRof a
&
,u|p0+€=,u|po+sf2(po) —K—+ O(&?). well. A perturbation such as that shown by the dashed line in
2 Fig. 3 may be considered as a small change at constant
0 separate the 1-2 part of the interface from the 2-3 part,
hus widening the metastable region. Notice that this makes
beledA and more positive a@B. So the chemical potential is
increased af and reduced &, thus enhancing the flux onto

de &€ d*e .

— =If,—-TK—. the 2-3 part of the wall. So the 2-3 part of the wall will catch
ot ax? ax* up with the leading 1-2 part and steady-state motion will be

_ N restored. Thisnegative feedbacknechanism is responsible

In Fourier space, writing for the linear stability of an unsplit interface.

" It is worth noting, in addition, that numerical solutions of
s(x,t)=f =(q,t)e'% dq, the Cahn-Hilliard equation have been performed, using a
—o three-well potential, and have confirmed that 1-3 interfaces

) . may propagate stably, even at large values .of
the equation of motion becomes

3E(q t) VI. LOCAL DYNAMICS OF A SPLIT INTERFACE

—— =~ (Pf,+TKg?) &(a.b).

It was shown above that steady motion of a 1-3 interface,
spanning the intermediate metastable well, is linearly stable.
In any well in the potential, the -coefficient Hence a 1-3 interface, once formed, continues to propagate
—g%(I'f,+T'Kg?) is negative for alb. So all Fourier modes in the absence ofarge perturbations. Such perturbations
of a small perturbation, about any piece of the solution in anay, however, arise, especially in the early stages of inter-
quadratic well, decay exponentially with time. Also, sinceface formation(including the dynamics prior to the time at
the pieces of the solution must always obey the matchingvhich the Cahn-Hilliard equation becomes a good approxi-
conditions at cusps in the potential, the solution as a whole isnation). Therefore, let us consider the situation whereby a
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0 paperf12] (see als§14]). The basic issue is whether the slab
Pp of metastable phase grows or shrinks.

When curvature is small, as is the cdssweerthe inter-
faces, the Cahn-Hilliard equation is well approximated by
the diffusion equatiorp=DV?p, with the diffusivity given
by D=TIf,(p), which is approximately constant given that
does not vary much.[¥ is exactly constant in a quadratic
Ax X potential well of fixedl".) Notice in Fig. 5 that the inequality

pe=>pc IS anecessary resuldf the metastability of well 2.

FIG. 4. Density profile of a system in which 1-2 and 2-3 inter- Hence, since the diffusion equation governs the interwall re-
faces are separated by a distarice The interfaces are traveling gion, j, is positive. Thus flux flows onto the 2-3 interface,
with velocitiesv, andu,, respectively. Densitiega, pg, pc, @1d  contributing positively tov, and negatively tow;. So the
po and fluxesj, andj, are also defined in the figure. effect of j, is to reduceAx, as would be expected for the

dynamics of a metastable phase. If phase 2 is to grow, the
large slab of metastable phase 2 has formed, by whateveonstant fluxj, into the system must be sufficiently large to
mechanism, so that the 1-2 and 2-3 interfaces are separatethke|v4|>|v,|. Invoking the diffusion approximation and
by a distance large compared with the sc‘Wf2 set by the the linearity of the functiom(x) in phase 2, the condition for
curvature term in the free energy. Such a situation is depictegrowth of the metastable phagather than recombination of
in Fig. 4, in which various quantities are defined: the inter-the 1-3 interfackbecomegusing Fick's law and conserva-
face separatiolx, the two interface velocities; andv,,  tion of mattey
the fluxes into the 1-2 interfage and between the interfaces
j» (both of which are taken to be approximately constant j,>D pB_pC/1+ Pe—Pa) (4
over the spatial regions of intergsand four densitiep, , ! Ax | Pp~—Pc
PB, Pc, andpp . Let us introduce a further approximation as
follows. We assume that the interfaces are moving suffi- When this condition is satisfied, a “split” mode of inter-
ciently slowly that the densitiespf,pg) and (oc,pp) on  facial propagation can arise, which is fundamentally differ-
either side of each are approximately the values that woul@nt from the propagation of an unsplit 1-3 interface in a
arise at coexistence of the two given phases, in the absengeimber of respects. The most important distinction is that
of the third. These pairs of values pfmay be found from now, if j; is held constant, the width of the metastable region
the bulk free-energy density by the usual double-tangenf\x grows without limit. In contrast, in a stable 1-3 interface,
construction, as shown in Fig.[Shich also shows the con- Ax remains bounded. Indeed, in the equilibrium=0) in-
struction for the globally stable binodal values,(pz) for  terface,Ax is of the order of the characteristic interfacial
1-3 phase coexistentdn principle, the double-tangent con- width ~/K/f,, and at higher speedd,x becomes smaller.
struction is subject to small corrections due to interface moAccordingly, there is an upper bound dx close to the
tion; these are calculated, for completeness, in Appendix Gequilibrium value (although not equal to it, since unsplit

Pz
Pc

Pa

but we neglect them here. propagation is resumed after a small, positive perturbation in
AX).
Another qualitative difference between the split and un-
A. Growth or collapse? split modes of propagation is their response to a perturbation.

The time evolution of such an interface is not strictly alt was demonstrated in Sec. V that increasing the wilith

question of Steady_sta(er even quasi_steady_stam/nam_ of the metastable region led to an increase in the flux through
ics. Accordingly, we give only a brief discussion and leave alt, resulting in anegativefeedback mechanism. On the other

fuller exploration of this interesting problem to the following hand, if the interface is split and therefore nonmonotonic and
containing a well-developed region in which diffusive mo-

tion is dominant over curvature-induced motion, increasing
Ax reduces the gradient in region 2. This redug¢esand
causes the 2-3 interface to lag still further behind the 1-2
wall. So the corresponding feedback in split interface motion
is positive It follows that, at constant;, there is a barriefin
configuration spageto the formation of an unsplit interface,
but once this barrier is crossed, such an interface will remain
split indefinitely.

f

(

l

1 '

1 ' '

' ' (
' '

l 1 h
[ | L
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FIG. 5. Demonstration of the double-tangent construction to find It has been shown thdgt least for piecewise-quadratic
the stable binodal densitiep,pg) and the metastable binodal potentialg the propagation of an unsplit interface is locally
densities pa,pg) and (pc,pp) in a three-well potential. This po- Stable and that, given sufficient input flux, the split interface
tential can be converted to the form of Fig. 2 by adding or subtractmode is also “stable’(in the sense of remaining split indefi-
ing a linear term {—f+ap+b) and then both shifting the origin  nitely). The question arises of which mode of evolution will
of p and rescaling it. be selected in a given system and how it might be possible to

B. Selection of a split or an unsplit mode
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change from one to the other. Clearly in a real system, tha moving interface. Using this scheme, it can be sh@amat

flux input to an interface is not constant. Normally, in late- least first order i) that an interface contracts when moving
stage evolution, it is a diminishing function of time. One under condensation and expands during evaporation. If a
might conclude from this that the criterion for growth of the metastable phase exists, whose density is intermediate to the
split mode[Eq. (4)] must at some point be violated. How- two stable phases, a moving interface between the stable
ever, this criterion becomes easier to satisfAasincreases. Phases is still locally stable with respect to small perturba-
The ultimate fate of a split interface in fact depends on sulions at all speeds, but may be “split” by a large, transient

persaturation: This is described in the following paf]. increase in the flux of condensing material and thereafter
The problem of how to “unbind” a 1-3 interface is some- exhibit a qualitatively different mode of propagation. Such a
transient disturbance is most likely to arise in the early stages

what clearer: A large transient increase in input flux is re- ¢ leati d th Th iit mode of interf i
quired to overcome the negative feedback mechanism g&! hucleation and growth. 1he Spiit mode ot interface motion

scribed in Sec. V. There is presumably some critical value oEeSUItS in the formation of a macroscopically large amount of

Ax at which the feedback switches from negative to positive Zicri:z?;itabrfa?eﬁ?aﬁebi?r? r?r?:i?]t?;\ ?nzc‘:’u.flfféeg:fgﬁ?e flgxec;f
and the interface splits. The transient increase in flux must b 9 9 ' 9 pap

. .y . 2] (see also[14]) discusses further the implications of
sufficient to_separate the I.eadl.r@_g 2) part of the mterfgce these findings for the growth rates of competing stable and
from the trailing part by this critical amounbeforethe in-

terface can deliver a restorative increase in flux to region énetastable domains during the phase-ordering process.

by curvature-induced motion. If the transient increase of in-
put flux is insufficient and the 1-3 interface adjusts to the ACKNOWLEDGMENTS
new higher speed, the criterion for unbinding it becomes This work was supported by EPSRC Grant No.

more stringent(since higher-speed interfaces are narroweigr/kK56025. We thank Wilson Poon for a series of illumi-
and hence both further from the critical value &k and  nating discussions.

“stiffer” in terms of the negative feedback mechanism

Since fluxes tend to decrease with time during late-stage APPENDIX A: EXACT SOLUTION
phase ordering, a transient increase in flux, sufficient to un- OF THE STEADY-STATE EQUATION
bind a 1-3 interface, is most likely to occur during the early- FOR A PIECEWISE-QUADRATIC POTENTIAL

stage dynamics(nucleation or spinodal decompositjon
These dynamics are not quasi-steady-state and we do not Equation(2) is now solved to fing(s) for any piecewise-
discuss them further here. But it is interesting that, whenevequadratic potentialf (p) and piecewise-constant mobility
metastable phases are possible, degails of these early- TI'(p). Between discontinuities ify, f,, orI', p(s) solves the
stage dynamics can determine the gross feat(spht vs  equation
unsplit mode of phase separation at much later times.

Finally, in the context of mode selection, a useful distinc- p" —ap”’—bp'=0
tion can be drawn between two types of interfacial unbind-
ing. The type described above can be called “curvature unwherea=f,/K andb=uv/KT'. The solution is
binding”: the process wherebx becomes large compared
to VK/f,. In the following paper12] (see alsg14]) we
study “diffusive unbinding,” which is linked to the evolu-
tion of j; (treated above as an externally imposed param-
eten. In Ref.[14], we also report numerical results that show for some constantd;, fixed by the boundary conditions and
that curvature unbinding certainly does occur, within thematching conditions. The constants are the three roots of
Cahn-Hilliard equation, at least for some parameter valueghe cubic equation
and some initial conditions. These include ca&gh as an 3
initial step function wall between phases 1 ang tBat, wj—aw;—b=0,
though strongly perturbed from the equilibrium profile, are
definitely not unbound to begin with.

3
p'(s)=2, Aje”s
=1

which is solved, for 2B2<4a3, by

a o—2
VII. CONCLUSION wl:2\[§sin 3 ),
It is often assumed that steady-state solutions of the
Cahn-Hilliard equation(model B), for the phase-ordering a |[o
dynamics of a conserved order parameter, are unphysical wy=2 §5'” g),
and therefore uninteresting. In this article we have shown
that such solutions shed light on the local dynamics of inter- a o+2m
faces, so long as care is taken to interpret the boundary ws:z\ﬁsin )
conditions correctly. Exact solutions were found for the case 3 3
of any piecewise-quadratic order-parameter potential and
) . A where
piecewise-constant mobility; these are locally stable. For the
most general case of arbitrary bulk free-energy density and 57
mobility as functions of mass densipy a systematic expan- azarcsir( ~b _) _
sion scheme was derivédppendix B to solve modeB for 433
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If 27b?>4a3, the solutions may be written in terms of will be derived now, using a systematic expansion of steady-
the real quantities a=(1/2b+%\b?—4/27a%)7® and state solutions of the Cahn-Hilliard equation in powers of the

B=(1/20— L 62— 4/27a%) 3 as in_terfac_e velocityv. As_ previousl_y, we consider the one-
dimensional Cahn-Hilliard equation in a frame moving at
w1=a+ g, velocity v, in which distance is measured by the coordinate

s; the order parametgr asymptotically approaches to a finite

/3 constantp,, ass— + . However, in contrast to the analysis

wy=—S(atp)+i—-(a=p), in Sec. Il and Appendix A, no particular form will be as-
sumed for the order-parameter potentigp) and likewise

w3=w} . the mobility I'(p) will be an arbitrary function.
All that remains to be found is the vector of coefficients 1. Inversion of variables
A It is convenient to invert the equation so thabecomes
1 . . . .
_| a the independent variable, and the equation is solvedsfor
A=| A2 This means that the unspecified potenfigh) and mobility
Az I'(p) are now functions of thindependenvariable. Hence-
] o o , forth let the curvature constaKt be set to unity without loss
for each piece. This is fixed by assigning valueto p”,  of generality.(This is equivalent to measuring time in units

"

and p” at the right-hand boundary of each section, whichst K and length in units of/K.) After inversion, the full,
may be redefined as the origin sfby multiplying A by an  gne-dimensional Cahn-Hilliard equation in a moving frame
appropriate exponential factor. From the equationddis),  may be written

it follows that

- s  a|(as\7t 9 (1]as|?
11 1\ 7Y p(0 —=—|—|] T—{z|—] -f{|-v.
, at  dp|\dp ap?1 2\ dp
A=| 01 0y w3 p"(0)
0 03 w3 p"(0) Clearly (as is well knowp, adding a linear term to the po-

tential f(p) has no effect.
The vector of derivatives g is determined from the solu-
tion in the neighboring piece by the matching conditions 2. Integration of the steady-state equation
given in Sec. lll, where it was stated that the gradient, chemi- . I N .
cal potential, and flux must all be continuous. That is, the Letus how set the time dgnvatwe to zero in th|§ moving
quantitiesp’, Kp”—f,, and (Kp" —f,p’)T" are continuous. frame and integrate once with respectgpto obtain the
These quantities can be calculated from the neighboring scii€ady-state equation
lution, given the value o$ at which it meets the discontinu- ds\ -1 &2 (1/ds
ity (says=s;). If the discontinuity(in the mobility or poten- F(p)(— _[ _(_
tial) is at a valuep=p4, thens; is given by inverting the dp dp?l2 dp
equationp(s;) = p; which, unfortunately, cannot in general
be done analytically(However, the inversion is always pos- Where the arbitrary linear term (Ap+c) has been explic-
sible for the reasons explained in Sec. I\ Blence one itly added tof(p). Note that the constant is equal to the
numerical step is required in the solutidfOf course the chemical potential in the asymptotically flat region:
special case of a double-well potential, with just one cuspr=u(*) (rememberu is nonuniform in a moving inter-
discontinuity, is completely soluble analytically since the ar-face). It can be confirmed that v p.. is the correct constant
bitrary origin ofs can be put at the cusp 6¢p).] Finally, the of integration, given that the left-hand side of the above
boundary condition thgt— p., ass— + o results in the so- equation is simply the flux.
lution for the highest-density section Let us defineh(p)=ds/dp, so that 1h=Vp. Then inte-
grating with respect t@, we find

-2

—f(p)+>\p+0] =(p=p=)v,

—(ps—p1) 01

d
A= 0 5( %hfz—f-i—)\p-i-c):l/j
0

(p—p=)h

+ .
T dp+const

It is easy to confirm that the left-hand side of this equation is
the chemical potential, measured with respect to the value at
p-. Now consider the factors in the integrand. As»p., ,

for negativeb (condensation sincew; is the only negative
root, and hence’(s)= —(p.—p1) w1 €1 for s>0 and

p(0)=p1. p— p. tends to zero linearly, while it is expectéand con-
firmed in the special case of Appendix) Ahat h(p)—

APPENDIX B: INTEGRAL SOLUTION logarithmically. Hence the integrand vanishespasp... So

OF THE CAHN-HILLIARD EQUATION the constant in the above equation is zero and we have

In Sec. IV, the assertion was made that interfaces generi- pe(p = p.,)
cally contract when moving under condensation. This result d_( ih=2—f+rp+c)= _Uf —,wh(p’) dp’.
and its converséthat interfaces expand during evaporajion p p I'(p")
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Let us henceforth absorb the termp+ ¢ into the definition  free-energy density(p) and the mobilityl'(p). All factors

of f(p). [That is, the arbitrary linear part dfp) is defined in the integrands of this expression are positive over the

so that the potential has zero value and gradienp.at]  ranges of integration, so is positive. Negative values of

Integrating by parts once gives the final result correspond to growth of the asymptotically flat, dense region
by condensation and positive values correspond to evapora-
tion. So, without assigning any special properties to the func-
tionsf andT, it has been shown that the interface contracts

h(p)=——=—= (As<<Asy) during condensation and expands during evapo-
2f(p) ration.
v (r=(pe—p')(p' —p) -1z As mentioned at the end of Sec. Iy, may vary from its
X|1- J h(p’) dp’ . equilibrium value(i.e., the density at which phase 3 coexists
f(p)Jp I'(p") in equilibrium with phase 1 for a three-well potenjidh the

(B1) present section, a formalism has been developed by which
the solution for a moving interface is expanded about the
v=0 solution. Does this allow for variation ip,.,? The an-

Notice that the Cahn-Hilliard equation, in its differential swer is “yes” because there is in fact a whole family of

form, is fourth order, but that this integral representation ofv =0 solutions with different values of.,, of which the

the steady-state equation contains omhe integration. equilibrium solution is just one member. The equilibrium
If h(p) is written as a power series in then the binomial solution is the special member of this family for whigh

in Eq. (B1) may be expanded and the formula iterated toasymptotically approaches a finite constans-as— o, rather

produce a systematic series approximationhfoo arbitrarily ~ than growing exponentiallyeither positive or negatiyeand

high powers of the velocity. The power-series expansion othus remaining curved and having unphysical boundary con-

the steady-state soluti@fp) is then obtained by integration ditions ats— —oo. But, for our purposes, the whole family

as may be used since, as discussed in Sec. lll, the left-hand

boundary is not put at negative infinity.

S(p)=f h(p) dp. APPENDIX C: CORRECTION TO THE DOUBLE-
TANGENT CONSTRUCTION FOR A MOVING
INTERFACE

Clearly the origin ofs (and hence the constant of integration  The double-tangent construction illustrated in Fig. 5 gives
is arbitrary. the equilibriumdensities of two coexisting phases. Recall its
elementary derivation as followW8]. In auniform part of the
3. First-order correction to the interfacial width system of volumeé/, containingN particles, the local density

This method is now applied to find the first-order correc-1S p=N/V and the free energy iE=fV. From these two
tion to the widthAs of a moving interface, defined as the simple relations and the definitions of chem|cal potential
distance between two points on the interface at which thét = (9F/dN)y and pressur@=—(dF/oV)y, it follows that
densities have certain fixed valuesandp, (which could be ~ f=#p—P, which is the equation of a straight line on a plot

the densities of the two maxima in a three-well potential, for®f f versusp, with gradientu=f'(p) and intercept—P.
examplg. We find that Given that two coexisting phases have equal chemical poten-

tials and pressures, it follows that the straight lines tangent to
f(p) at the respective coexistent densities have equal gradi-

As=Asy+co+0(v?), ents and intercepts. Hence they are the same line.
Consider now the nonequilibrium case of an interface in
where uniform motion at velocityw . By continuity, the flux at any
point on the interface isj=—(p.—p)v. In model B,
N dp Vu=—j/T. Hence, integrating across the interface, the dif-
So~ Pt (o) ference in chemical potential between the dense, asymptoti-
p1 (p) . R .
cally uniform phase at positive infinity and any given point
is

and

AMEM(OO)_M(A):UJ;([)O}_ P) dx

1 (e —a2 | P '
c=7| dpflp) dp’ (ps—p")
P1 p from which the equilibrium result follows foy =0.
X(p'—p)T(p") L (p") Y2 Now let us consider the_ _Iocal quantiB= ,L_Lp—f (which
reduces to the usual definition of pressure in a homogeneous
This last equation expresses the rate of change of width ¢fystem. With this definition,
the interface with velocityc in terms only of the two func-

tions that characterize the physics of the system: the bulk VP=pVu—KV?pVp.
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Using againvu=—j/I", and integrating gives * D= p
A,u=vJ' T dx,
AP=P P(A)= 1K o))" prjd §
=P(»)—P(A)= K5 X ATX-

AP~v f de.
If the curvature part of the chemical potential is small at A

point A, this expression for the pressure difference becomeﬁlotice that both corrections depend on the range of integra-

K SN2 L tion, i.e., on position of the poirA. This is no surprise since
AP=— — ]_) _f ﬂdx= _J ﬂdXJr O(v?). there must be gradients in the pressure and chemical poten-
21\ Al Al tial outside the interface in order to induce motion. Notice

also that both coefficients af are positive, sa\ i andAP
So the equality of chemical potentials and pressures acrossage of the same sign as This is negative for condensation
static interface, which gives rise to the double-tangent conand positive for evaporation. So, as expected, during conden-
struction, has the following corrections, to first ordervin  sation the pressure difference and chemical potential differ-
for a moving interface: ence across an interface are smaller than at equilibrium.
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