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Diffusive evolution of stable and metastable phases. I. Local dynamics of interfaces

R. M. L. Evans* and M. E. Cates†

Department of Physics and Astronomy, The University of Edinburgh, JCMB King’s Buildings, Mayfield Road,
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~Received 7 April 1997!

We find analytical solutions to the Cahn-Hilliard equation for the dynamics of an interface in a system with
a conserved order parameter~model B). We show that, although steady-state solutions of modelB are un-
physical in the far field, they shed light on the local dynamics of an interface. Exact solutions are given for a
particular class of order-parameter potentials and an expandable integral equation is derived for the general
case. As well as revealing some generic properties of interfaces moving under condensation or evaporation, the
formalism is used to investigate two distinct modes of interface propagation in systems with a metastable
potential well. Given a sufficient transient increase in the flux of material onto a condensation nucleus, the
normal motion of the interface can be disrupted by interfacial unbinding, leading to growth of a macroscopic
amount of a metastable phase.@S1063-651X~97!03811-7#

PACS number~s!: 05.70.Fh, 64.60.My, 05.70.Ln, 64.60.Qb
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I. INTRODUCTION

The kinetics of phase ordering is a central topic in no
equilibrium statistical physics. Much of our understanding
based on theories that describe one or more slowly vary
density ~or order parameter! variables, governed by a loca
Langevin equation@1#. In general, the density variable~s!
evolve~s! systematically in response to a driving force, whi
is a derivative of the underlying free-energy functional, w
some mobility~characterized by the Onsager matrix!. On top
of this are noise terms whose magnitude is fixed by requir
that the Boltzmann distribution is a stationary state of
dynamics. The nature of the Onsager mobility depends
the kind of ordering involved; specifically, we must disti
guish conserved order parameters from nonconserved o
In the conserved case, the density in some region can ch
only by diffusive transport across its boundary; its time d
rivative is therefore the divergence of a current. This is
the case for nonconserved order parameters, which
change locally in direct response to the driving force.

The low-temperature~noise-free! limit is usually consid-
ered appropriate for the study of phase ordering kinetics
which a system is prepared far from equilibrium and th
allowed to evolve. For example, a uniform high-temperat
phase can be quenched into a region where it is either loc
or globally unstable with respect to separation into two m
roscopic phases. Local instability leads to spinodal deco
position @2#; if the system is locally stable, phase separat
proceeds by a nucleation and growth mechanism@3#. In ei-
ther case, the governing equation for phase separation
conserved scalar order parameter is the Cahn-Hilliard eq
tion @4#

]r

]t
5¹•S G¹H d f

dr
2K¹2rJ D . ~1!
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As explained in Sec. II,K is the square-gradient coefficien
in a free-energy expansion, which treats the order param
r as slowly varying;G is the mobility. Note that in principle
Cahn-Hilliard theory can accommodate an arbitrary form
f (r), which is the free-energy density for a homogeneo
state.~In particular, it does not assume thatf is a polynomial
in the order parameterr, as would be assumed in the time
dependent Landau-Ginzburg theory of dynamics close t
critical point @5#.! Indeed, the approach should be qualit
tively applicable even iff (r) consists of the lower envelop
of several unrelated functions representing phases of dif
ent symmetry. The free energy near a liquid-solid transit
is of this form, for example, withr the material density. This
assumes only that, whatever other order parameters di
guish the various phases~such as crystallinity!, these can
relax quickly and hence the rate-limiting process for t
phase ordering is transport ofr. It is conventional, in Eq.~1!,
to treatK as a constant~independent ofr). We do this in
what follows, although it might be a dangerous assumpt
when f is a composite function as just described. With th
caveat, Eq.~1! will be relevant at long times and large dis
tances if the other order parameters are nonconserved.

In this paper, we therefore consider the phase-orde
problem for relatively general forms off (r), wherer is a
concentration variable. We assume this is theonly conserved
order parameter, thereby ruling out systems with signific
concentration deviations in more than one species and
ruling out consideration of heat transport. This latter restr
tion might be severe in, say, metallurgical applications,
not for soft condensed matter systems~such as colloidal sus
pensions!, which are our main interest. Indeed, for man
such systems the latent heats of phase changes are en
negligible @6#.

Our work is motivated by the desire to understand be
the role of metastable phases in the kinetics of phase s
ration. That such a role exists has been long acknowledg
For example, the ‘‘Ostwald rule of stages’’@7# asserts that a
system will progress from an unstable to a stable state,
directly, but by a sequence of steps through any interven
metastable states that may be present. In the area of m
lurgy, there is an extensive folklore on the subject@8#. Here
5738 © 1997 The American Physical Society
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56 5739DIFFUSIVE EVOLUTION OF STABLE . . . . I. . . .
we aim at a more fundamental understanding, based o
direct analysis of the Cahn-Hilliard problem. For the mo
part, we work in one space dimension.

Specifically, we shall focus onsteady-state solutionsof
the Cahn-Hilliard equation, in which interfaces betwe
phases move with constant velocities. This approach app
at first paradoxical, since the diffusive nature of the transp
rules out true constant-velocity solutions when conserved
der parameters are present.~Indeed, the basic scaling o
lengths in diffusive transport is witht1/2, whereas constan
velocities would imply linear scalings.! However, as we dis-
cuss later, significant physical insights can be gained
viewing the interfacial motion as a quasisteady process
broadly comparable analysis for nonconserved dynam
~where true steady-state motion is possible! has been given
recently by Bechhoefer and others@9–11#. These authors
showed that under sufficient supercooling~or, equivalently
in a ferromagnetic system, with sufficient applied field! the
interface between two stable coexisting phases could bec
dynamically unstable toward ‘‘splitting.’’ The splitting insta
bility results in a macroscopically thick slab of a metasta
phase appearing between the two stable phases, which
then grow.

One of the main questions we address here and in
following paper@12# is whether the same scenario is possi
for the conserved-order-parameter case. In this paper
show that, although there is no mathematically direct ana
of the splitting instability found by Bechhoeferet al., a suf-
ficient transient flux from the less dense to the more de
stable phase can indeed cause interfacial splitting. We
argue that the split mode will be maintained so long as
supersaturation of the less dense phase is sufficiently la
In the following paper@12# we study the long-time limit in
which the interfaces become sharp on the scale of their s
ration and give a more detailed discussion of the criti
supersaturation required to sustain the split mode at l
times. That paper also contains a discussion of experime
evidence, involving colloid-polymer mixtures@13#, which
suggests that the onset of the split mode might be conne
with the observation of arrested crystallization, beyond
threshold of supersaturation, in the transition from a colloi
fluid to a colloidal crystal. A brief account of these ideas
given in @14#.

The rest of this paper is organized as follows. In Sec
we recall the Cahn-Hilliard equation and discuss the con
tions under which a one-dimensional treatment should
fice. In Sec. III we formulate the quasi-steady-state form
the Cahn-Hilliard equation, paying careful attention to t
boundary conditions that are required to make the solu
physically meaningful. An exact solution is described fo
piecewise quadratic potentialf (r), with piecewise constan
mobility. In Sec. IV we describe in more detail the propert
of the solution, focusing on the case wheref (r) shows a
metastable minimum of intermediate density. We argue
there is no critical velocity above which the interface b
tween stable phases ceases to have a steady-state soluti~in
contrast to the nonconserved case! and in Sec. V we show
explicitly that such an ‘‘unsplit’’ mode of interface motion i
linearly stable. In Sec. VI, however, we show that a sp
interface, should one arise, can also be dynamically st
under appropriate conditions. We discuss qualitatively
a
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nature of the~large! perturbation required to cause splittin
Section VII summarizes our conclusions. Appendix A pr
vides some details of the exact solution for the piecewi
quadratic case, whereas in Appendix B we derive an ex
integral representation of the steady-state solution for gen
potentials, thereby confirming and extending some of
earlier results.

II. THE CAHN-HILLIARD EQUATION

Consider a system characterized by one conserved, s
order parameter, such as local mass density, in a part o
phase diagram where two-phase coexistence is the equ
rium state. If the system is far from criticality and is initiall
out of equilibrium, then its evolution towards equilibrium
obeys modelB, described by Eq.~1! ~the Cahn-Hilliard
equation!, which is derived as follows. Let the free energy
the system be a functionalF@r# of the order parameterr(x).
Then the chemical potential is defined by the functional
rivative

m5
dF

dr

(m can thereby depend on gradients ofr, as well asr itself!.
Currents in modelB are induced by gradients of the chem
cal potential

j52G¹m,

where the constant of proportionalityG is the Onsager mo-
bility, which may be a function ofr. Since the order param
eter is conserved, its time derivative is given by a continu
equation

]r

]t
52¹• j.

Let the free-energy functional be of the form

F@r#5E ddx$ f ~r!1 1
2 K~¹r!2%.

The form of the bulk free-energy density~or ‘‘order-
parameter potential’’! f and the value ofK are system de-
pendent. Let the system in question be initially homogene
at a nonequilibrium value ofr, between two minima inf ,
i.e., within a two-phase coexistence region of the phase
gram. For definiteness, letr be initially close to the low-
density minimum inf . Small fluctuations initially induce the
evolution ofr towards equilibrium. Early stages of the ev
lution proceed by nucleation, iff is convex at the given
value of r, or by spinodal decomposition, if concave. Th
stage of the dynamics is not addressed here. By what
process, domain walls~interfaces! soon form. If surface ten-
sions are neglected~legitimate when typical interfacial radi
of curvature are large, which we assume!, the subsequen
motion of a wall is driven by diffusion from the far field. Th
local profile of the wall changes on a shorter time scale th
the far-field gradients that determine the flux onto the w
simply because of the difference in length scales: While ty
cal distances between interfaces are proportional tot1/2, the
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5740 56R. M. L. EVANS AND M. E. CATES
characteristic width an interface remains of the order
AK/(d2f /dr2) at all times. Therefore, although typical inte
wall distances vary with time, intrawall dynamics~concern-
ing the local density profile of an interface! soon become
approximately steady state, with a quasiconstant input fl

These local interface dynamics are concerned with t
movement of a (d21)-dimensional wall in ad-dimensional
space, translating normal to itself. Hence, if curvature a
surface-tension effects are ignored, the problem becomes
dimensional; the Cahn-Hilliard equation then reduces to

]r

]t
5

]

]xFG~r!
]

]xS d f

dr
2K

]2r

]x2D G .

In the next section, we show how to find steady-state so
tions of this equation for a piecewise-quadratic potential.

III. EXACT STEADY-STATE SOLUTION

Let us transform to a frame moving at velocityv, in
which the position coordinate is

s[x2vt,

and introduce the notationf n(r)[(d/dr)nf (r). Demanding
that the time derivative vanishes in this frame, we find tha
steady-state solutionr(s) to the Cahn-Hilliard equation
traveling at velocityv, satisfies

r-82
f 2

K
r92

v
KG

r85
f 3

K
r821

1

G

dG

dr S f 2

K
r82r-D r8 ~2!

which is a third-order ordinary differential equation inr8
([dr/ds). If G and f 2 are both independent ofr then the
right-hand side vanishes and the left-hand side becomes
ear and homogeneous inr8. So the problem is~at least!
piecewise soluble for a piecewise-quadratic potentialf (r),
with piecewise-constant mobilityG. Such a model is actually
fairly versatile and we therefore explore it in detail.

At discontinuities in our piecewise constantf 2 and/orG,
the solutions for the separate pieces must respect ce
matching conditions. Specifically, the current must be c
tinuous so that¹• j remains finite, the chemical potentia
must be continuous to avoid infinite currents, and continu
of the gradient ofr is required to avoid infinities in the
chemical potential. These three conditions are sufficien
fix the constants of integration for the above third-ord
equation inr8. Subsequent integration to findr gives rise to
an additional arbitrary constant, which is fixed by demand
continuity of r itself. The full solution is given in detail in
Appendix A. For each piece of the potential, this solution h
the form

r8~s!5(
j 51

3

Aje
v j s, ~3!

where the constantsAj andv j depend onf 2, K, G, andv.
In addition to the matching conditions@which fix some of

the constants arising in Eq.~3! from the division off (r) and
G(r) into pieces#, boundary conditions are required to sele
a specific solution to the differential equation. The corr
f
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choice and interpretation of these boundary conditions
not trivial; we discuss them carefully before proceeding f
ther. The case of interest~depicted in Fig. 1! is where a
region of the high-density phase has formed and is grow
by condensation from the supersaturated low-density ph
~Note that, throughout this paper, the high-density phas
depicted on the right-hand side of the diagrams and there
grows by leftward motion of the interface. The opposite co
vention is adopted in Refs.@12# and@14#.! The interface is to
be modeled in isolation, so the high-density phase is se
infinite. Two boundary conditions arise from this: The de
sity ~and hence chemical potential! asymptotically ap-
proaches a constant valuer` as s→1`, say, and the flux
asymptotically approaches zero in this limit. We may no
either regardv in Eq. ~2! as a given constant and then, fro
integration, deduce the conditions at the other boundary ov
may be seen as an eigenvalue that is set by further boun
conditions. In any case, at the second boundary a flux
required~to induce motion! and this implies a gradient in th
chemical potential. Hence it does not make sense to put
boundary ats→2`, asm would be infinite here; instead th
left-hand boundary must be at some finite position. T
raises two questions: how to take the thermodynamic li
and how to find steady-state solutions in a finite system. T
interpretation that resolves these difficulties is as follow
The left-hand boundary is at a finite distance from the int
face and moves with the interface. It is not in fact the edge
the system, but simply the point at which the behavior cea
to be quasi-steady-state. The part of the system to the le
this boundary, which does not solve the steady-state eq
tion, may be referred to as the ‘‘driving region,’’ since it
responsible for supplying the quasiconstant flux and che
cal potential to the propagating interface, by non-steady-s
diffusive depletion of material. In summary, a specific so
tion to the steady-state equation is fixed by the asympt
value of r in the limit s→1` and by the values of the
chemical potential and flux at some~rather ill-defined! posi-
tion to the left of the interface, where the steady-state reg
meets the driving region.

IV. PROPERTIES OF THE SOLUTION

One important qualitative observation, noticeable
graphs~such as those discussed in Sec. IV A! of the exact
steady-state solution calculated in Appendix A, is that

FIG. 1. Schematic diagram of the system. Densityr is plotted
against distances. On the right-hand side of the figure, a high
density domain has formed, for whichr→r` as s→1`. On the
low-density side of the interface, the region for which the qua
steady-state approximation holds meets the ‘‘driving region
which becomes depleted as material condenses onto the interf
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56 5741DIFFUSIVE EVOLUTION OF STABLE . . . . I. . . .
characteristic width of the interface alwaysdecreasesas the
speed of condensation~or equivalently the incident flux! in-
creases. In Appendix B, it will be shown, to first order inv,
that this is a generic result. A second qualitative result, fou
below ~Sec. IV B!, is that steady-state solutions exist at
velocities v. This holds even when an intermediate me
stable well is present in the order-parameter potential;
cordingly ~and in contrast to the case of a nonconserved
der parameter@9#!, there is no critical velocity above whic
the interfacemustsplit. Both of these results have implica
tions for the formation of metastable phases.

A. Form of the interfacial profile

Before discussing splitting, we show some typical n
merical results for a steadily moving interface, in a syst
where a metastable phase is possible. Consider a syste
which f (r) contains a metastable well at a density betwe
that of the growing high-density phase and the supers
rated low-density phase. A piecewise-parabolic form
such a potential is shown in Fig. 2~a!. ~Metastability requires
that the middle well isabove the common tangent to th
other two wells.! Let the low-, intermediate-, and high
density wells be referred to as 1, 2, and 3, respectively.
may define the order parameterr ~chosen as a scaled, rela
tive density! to be61 at the minima corresponding to phas
1 and 3 and take their free-energy densitiesf (21) and

FIG. 2. ~a! Piecewise-quadratic three-well potentialf (r), for
which all relevant parameters are given. Well 2 is metastable.~b!
Density profile of an equilibrium interface for the above potenti
Regions are labeled in which the density corresponds to wells 1
and 3 of the potential.~c! Density profile of an interface moving a
velocity 20.02KG for the same potential and constant mobilityG.
Notice that region 2 is narrower than in the equilibrium case.
d
l
-
c-
r-

-

in
n
u-
r

e

f (11) to be equal.@This choice involves no loss of gene
ality since, as is well known@15#, adding a linear term to the
free-energy density (f→ f 1ar1b) has no effect on the so
lutions of the Cahn-Hilliard equation.# Steady-state interface
profiles for this system are given in Fig. 2~b! for v50 ~i.e.,
the equilibrium wall! and in Fig. 2~c! for v520.02KG. In
each case the mobilityG is constant throughout the system
Negative-v solutions are of greatest interest since they
scribe the condensation of material from a supersatura
region onto a growing domain and are therefore centra
phase-ordering dynamics. Notice that both solutions sho
have an inflection at the density of the metastable phas
Without forming amacroscopicamount of the metastabl
phase, the interface takes advantage of the local minimum
free energy by having extra material at this density. Regio
is noticeably narrower in Fig. 2~c! ~for condensation! than in
Fig. 2~b! ~the equilibrium profile!.

B. Existence of solutions for an unsplit interface for allv

We are interested in whether such a steady-state inter
might split into two parts, the 1-2 part of the interface prop
gating faster than the 2-3 part, analogously to the ‘‘dynam
splitting instability’’ @9# that can arise in the dynamics of
nonconserved order parameter in a three-well potential
the nonconserved case, a critical velocity exists, above wh
there exists no steady-state solution for the propagation
1-3 interface; instead a macroscopic amount of the m
stable phase 2mustbe created between a pair of moving~1-2
and 2-3! interfaces.

In comparing the conserved and nonconserved dynam
however, an important distinction should be borne in min
In the nonconserved case, the velocity of each interfac
controlled by an external field, which adds a linear term
the potential.~Indeed, to obtain a dynamic splitting instabi
ity in the nonconserved case, the field must cause the po
tial in the middle well to fallbelowthat of one of the others.!
In the conserved case, however, linear terms in the pote
are irrelevant; instead, the velocity is controlled by t
boundary conditions. We now present an argument show
that the unsplit propagation mode exists for all velocities
this case.~The argument isnot limited to the case of piece
wise quadratic potentials.!

First, note that Eq.~2! may in principle be integrated spa
tially, from right to left, for a givenv and r` , to find the
value ofr at any point. This could fail to produce a solutio
for a three-well potential, only if the resultant profiler(s)
fails to span all three wells due to the presence of a minim
in the functionr(s). This would occur whenever the give
value ofv was above the critical value. However, such tur
ing points inr(s) do not arisein the steady-state solutions
This follows from the expression for the chemical potenti

m5
d f~r!

dr
2K

]2r

]x2
.

To see why, consider first the equilibrium interface profi
for which m is a constant. Clearly, this spans all three we
Any solution of negativev ~describing condensation! must
have a higher chemical potential than the equilibrium val
at any given point on the interface wherer,r` , because

.
2,
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5742 56R. M. L. EVANS AND M. E. CATES
there is a steady flux onto the high-density phase. Hence
any given value ofr, it follows from the above expressio
for m that the curvature ofr(s) must bemore negativethan
for the equilibrium profile. So no minimum exists inr(s).
This argument also holds ifr` is greater than the equilibrium
value since there is still no minimum to thev50 solution in
this case. The argument may even be extended to the
wherer` is below the equilibrium value so that thev50
solution exhibits a minimum. So long as this static soluti
spans all three wells, negative-v solutions with the same as
ymptote must also do so since their curvature at any gi
value ofr is more negative. Hence there is no critical velo
ity for condensation.

V. STABILITY OF THE SOLUTIONS

Having established theexistenceof solutions correspond
ing to unsplit interfacial propagation at all velocitiesv, we
now show that these solutions are stable against linear
turbations.@The argument belowis restricted to piecewise
quadraticf (r).#

Let the fieldr(x,t) obey the full Cahn-Hilliard equation
of motion and be written as

r~x,t !5r0~x,t !1«~x,t !,

wherer0(x,t) is a solution of the steady-state equation an«
is initially small. Differentiating with respect to time gives

]«

]t
5

]

]xS G
]m

]x U
r01«

D 2
]

]xS G
]m

]x U
r0

D ,

where

mur01«5mur0
1« f 2~r0!2K

]2«

]x2
1O~«2!.

For the exact solutions calculated in Appendix A,f 2 andG
are both piecewise constant. It follows that, on any piece
this solution, a small perturbation« about the solution obey
the linearized equation of motion

]«

]t
5G f 2

]2«

]x2
2GK

]4«

]x4
.

In Fourier space, writing

«~x,t !5E
2`

`

«̃ ~q,t !eiqx dq,

the equation of motion becomes

] «̃ ~q,t !

]t
52q2 ~G f 21GKq2! «̃ ~q,t !.

In any well in the potential, the coefficien
2q2(G f 21GKq2) is negative for allq. So all Fourier modes
of a small perturbation, about any piece of the solution i
quadratic well, decay exponentially with time. Also, sin
the pieces of the solution must always obey the match
conditions at cusps in the potential, the solution as a who
or

se

n
-

r-

f

a

g
is

stable when all continuous parts of the potential are con
@as is the case, for instance, in the potential of Fig. 2~a!#.
Furthermore, in any concave part of the potential, solutio
are stable with respect to perturbations of shorter wavelen
than 2pAK/2 f 2. Hence, so long as the spatial distance o
which the interfacial profile spans a concave part of the
tential is less than 2pAK/2 f 2, the solution will be stable. It
is obviously true that the equilibrium interface profile sat
fies this linear stability criterion. As stated previously, w
have observed solutions, for interfaces moving due to c
densation, to benarrower than the equilibrium interface~and
proved it to first order inv in Appendix B!; hence they too
are linearly stable.

Although this completes the argument, it is useful to ha
a conceptual picture of the mechanisms giving rise to t
stability. Consider once more the profile in Fig. 2~c! of a
moving interface for a potential with a metastable midd
well. A perturbation such as that shown by the dashed lin
Fig. 3 may be considered as a small change ins at constant
r rather than vice versa. The perturbation shown is tend
to separate the 1-2 part of the interface from the 2-3 p
thus widening the metastable region. Notice that this ma
the curvature more negative on the part of the interface
beledA and more positive atB. So the chemical potential is
increased atA and reduced atB, thus enhancing the flux onto
the 2-3 part of the wall. So the 2-3 part of the wall will catc
up with the leading 1-2 part and steady-state motion will
restored. Thisnegative feedbackmechanism is responsibl
for the linear stability of an unsplit interface.

It is worth noting, in addition, that numerical solutions
the Cahn-Hilliard equation have been performed, using
three-well potential, and have confirmed that 1-3 interfa
may propagate stably, even at large values ofv.

VI. LOCAL DYNAMICS OF A SPLIT INTERFACE

It was shown above that steady motion of a 1-3 interfa
spanning the intermediate metastable well, is linearly sta
Hence a 1-3 interface, once formed, continues to propa
in the absence oflarge perturbations. Such perturbation
may, however, arise, especially in the early stages of in
face formation~including the dynamics prior to the time a
which the Cahn-Hilliard equation becomes a good appro
mation!. Therefore, let us consider the situation whereby

FIG. 3. Density profile of a steadily moving interface~solid line!
and the result of a perturbation in the direction of the arro
~dashed line!, which has increased the width of the region occup
ing the metastable middle well of the potential. The result is a m
negative curvature in the position labeledA and more positive cur-
vature atB.
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large slab of metastable phase 2 has formed, by what
mechanism, so that the 1-2 and 2-3 interfaces are sepa
by a distance large compared with the scaleAK/ f 2 set by the
curvature term in the free energy. Such a situation is depic
in Fig. 4, in which various quantities are defined: the int
face separationDx, the two interface velocitiesv1 and v2,
the fluxes into the 1-2 interfacej 1 and between the interface
j 2 ~both of which are taken to be approximately const
over the spatial regions of interest!, and four densitiesrA ,
rB , rC , andrD . Let us introduce a further approximation a
follows. We assume that the interfaces are moving su
ciently slowly that the densities (rA ,rB) and (rC ,rD) on
either side of each are approximately the values that wo
arise at coexistence of the two given phases, in the abs
of the third. These pairs of values ofr may be found from
the bulk free-energy density by the usual double-tang
construction, as shown in Fig. 5@which also shows the con
struction for the globally stable binodal values (ra ,rb) for
1-3 phase coexistence#. In principle, the double-tangent con
struction is subject to small corrections due to interface m
tion; these are calculated, for completeness, in Appendix
but we neglect them here.

A. Growth or collapse?

The time evolution of such an interface is not strictly
question of steady-state~or even quasi-steady-state! dynam-
ics. Accordingly, we give only a brief discussion and leav
fuller exploration of this interesting problem to the followin

FIG. 4. Density profile of a system in which 1-2 and 2-3 inte
faces are separated by a distanceDx. The interfaces are traveling
with velocitiesv1 andv2, respectively. DensitiesrA , rB , rC , and
rD and fluxesj 1 and j 2 are also defined in the figure.

FIG. 5. Demonstration of the double-tangent construction to fi
the stable binodal densities (ra ,rb) and the metastable binoda
densities (rA ,rB) and (rC ,rD) in a three-well potential. This po
tential can be converted to the form of Fig. 2 by adding or subtr
ing a linear term (f→ f 1ar1b) and then both shifting the origin
of r and rescaling it.
er
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paper@12# ~see also@14#!. The basic issue is whether the sla
of metastable phase grows or shrinks.

When curvature is small, as is the casebetweenthe inter-
faces, the Cahn-Hilliard equation is well approximated
the diffusion equationṙ5D¹2r, with the diffusivity given
by D5G f 2(r), which is approximately constant given thatr
does not vary much. (D is exactly constant in a quadrati
potential well of fixedG.! Notice in Fig. 5 that the inequality
rB.rC is a necessary resultof the metastability of well 2.
Hence, since the diffusion equation governs the interwall
gion, j 2 is positive. Thus flux flows onto the 2-3 interfac
contributing positively tov2 and negatively tov1. So the
effect of j 2 is to reduceDx, as would be expected for th
dynamics of a metastable phase. If phase 2 is to grow,
constant fluxj 1 into the system must be sufficiently large
make uv1u.uv2u. Invoking the diffusion approximation and
the linearity of the functionr(x) in phase 2, the condition fo
growth of the metastable phase~rather than recombination o
the 1-3 interface! becomes~using Fick’s law and conserva
tion of matter!

j 1.D
rB2rC

Dx S 11
rB2rA

rD2rC
D . ~4!

When this condition is satisfied, a ‘‘split’’ mode of inter
facial propagation can arise, which is fundamentally diffe
ent from the propagation of an unsplit 1-3 interface in
number of respects. The most important distinction is t
now, if j 1 is held constant, the width of the metastable reg
Dx grows without limit. In contrast, in a stable 1-3 interfac
Dx remains bounded. Indeed, in the equilibrium (v50) in-
terface,Dx is of the order of the characteristic interfaci
width ;AK/ f 2, and at higher speeds,Dx becomes smaller
Accordingly, there is an upper bound onDx close to the
equilibrium value ~although not equal to it, since unspl
propagation is resumed after a small, positive perturbatio
Dx).

Another qualitative difference between the split and u
split modes of propagation is their response to a perturbat
It was demonstrated in Sec. V that increasing the widthDx
of the metastable region led to an increase in the flux thro
it, resulting in anegativefeedback mechanism. On the oth
hand, if the interface is split and therefore nonmonotonic a
containing a well-developed region in which diffusive m
tion is dominant over curvature-induced motion, increas
Dx reduces the gradient in region 2. This reducesj 2 and
causes the 2-3 interface to lag still further behind the
wall. So the corresponding feedback in split interface mot
is positive. It follows that, at constantj 1, there is a barrier~in
configuration space! to the formation of an unsplit interface
but once this barrier is crossed, such an interface will rem
split indefinitely.

B. Selection of a split or an unsplit mode

It has been shown that~at least for piecewise-quadrati
potentials! the propagation of an unsplit interface is local
stable and that, given sufficient input flux, the split interfa
mode is also ‘‘stable’’~in the sense of remaining split indefi
nitely!. The question arises of which mode of evolution w
be selected in a given system and how it might be possibl
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change from one to the other. Clearly in a real system,
flux input to an interface is not constant. Normally, in lat
stage evolution, it is a diminishing function of time. On
might conclude from this that the criterion for growth of th
split mode@Eq. ~4!# must at some point be violated. How
ever, this criterion becomes easier to satisfy asDx increases.
The ultimate fate of a split interface in fact depends on
persaturation: This is described in the following paper@12#.

The problem of how to ‘‘unbind’’ a 1-3 interface is some
what clearer: A large transient increase in input flux is
quired to overcome the negative feedback mechanism
scribed in Sec. V. There is presumably some critical value
Dx at which the feedback switches from negative to posit
and the interface splits. The transient increase in flux mus
sufficient to separate the leading~1-2! part of the interface
from the trailing part by this critical amount,beforethe in-
terface can deliver a restorative increase in flux to regio
by curvature-induced motion. If the transient increase of
put flux is insufficient and the 1-3 interface adjusts to t
new higher speed, the criterion for unbinding it becom
more stringent~since higher-speed interfaces are narrow
and hence both further from the critical value ofDx and
‘‘stiffer’’ in terms of the negative feedback mechanism!.
Since fluxes tend to decrease with time during late-st
phase ordering, a transient increase in flux, sufficient to
bind a 1-3 interface, is most likely to occur during the ear
stage dynamics~nucleation or spinodal decomposition!.
These dynamics are not quasi-steady-state and we do
discuss them further here. But it is interesting that, whene
metastable phases are possible, thedetails of these early-
stage dynamics can determine the gross features~split vs
unsplit mode! of phase separation at much later times.

Finally, in the context of mode selection, a useful distin
tion can be drawn between two types of interfacial unbin
ing. The type described above can be called ‘‘curvature
binding’’: the process wherebyDx becomes large compare
to AK/ f 2. In the following paper@12# ~see also@14#! we
study ‘‘diffusive unbinding,’’ which is linked to the evolu
tion of j 1 ~treated above as an externally imposed para
eter!. In Ref. @14#, we also report numerical results that sho
that curvature unbinding certainly does occur, within t
Cahn-Hilliard equation, at least for some parameter val
and some initial conditions. These include cases~such as an
initial step function wall between phases 1 and 3! that,
though strongly perturbed from the equilibrium profile, a
definitely not unbound to begin with.

VII. CONCLUSION

It is often assumed that steady-state solutions of
Cahn-Hilliard equation~model B), for the phase-ordering
dynamics of a conserved order parameter, are unphys
and therefore uninteresting. In this article we have sho
that such solutions shed light on the local dynamics of in
faces, so long as care is taken to interpret the bound
conditions correctly. Exact solutions were found for the ca
of any piecewise-quadratic order-parameter potential
piecewise-constant mobility; these are locally stable. For
most general case of arbitrary bulk free-energy density
mobility as functions of mass densityr, a systematic expan
sion scheme was derived~Appendix B! to solve modelB for
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a moving interface. Using this scheme, it can be shown~to at
least first order inv) that an interface contracts when movin
under condensation and expands during evaporation.
metastable phase exists, whose density is intermediate to
two stable phases, a moving interface between the st
phases is still locally stable with respect to small pertur
tions at all speeds, but may be ‘‘split’’ by a large, transie
increase in the flux of condensing material and therea
exhibit a qualitatively different mode of propagation. Such
transient disturbance is most likely to arise in the early sta
of nucleation and growth. The split mode of interface moti
results in the formation of a macroscopically large amoun
the metastable phase and relies on a sufficiently large flu
condensing material being maintained. The following pa
@12# ~see also@14#! discusses further the implications o
these findings for the growth rates of competing stable
metastable domains during the phase-ordering process.
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APPENDIX A: EXACT SOLUTION
OF THE STEADY-STATE EQUATION

FOR A PIECEWISE-QUADRATIC POTENTIAL

Equation~2! is now solved to findr(s) for any piecewise-
quadratic potentialf (r) and piecewise-constant mobilit
G(r). Between discontinuities inf 1, f 2, or G, r(s) solves the
equation

r-82ar92br850

wherea5 f 2 /K andb5v/KG. The solution is

r8~s!5(
j 51

3

Aje
v j s

for some constantsAj , fixed by the boundary conditions an
matching conditions. The constantsv j are the three roots o
the cubic equation

v j
32av j2b50,

which is solved, for 27b2,4a3, by

v152Aa

3
sinS s22p

3 D ,

v252Aa

3
sinS s

3 D ,

v352Aa

3
sinS s12p

3 D ,

where

s[arcsinS 2b A 27

4a3D .
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If 27b2.4a3, the solutions may be written in terms o
the real quantities a[~1/2b11

2 Ab224/27a3)1/3 and

b[(1/2b2 1
2 Ab224/27a3)1/3 as

v15a1b,

v252
1

2
~a1b!1 i

A3

2
~a2b!,

v35v2* .

All that remains to be found is the vector of coefficients

A[S A1

A2

A3

D
for each piece. This is fixed by assigning values tor8, r9,
and r- at the right-hand boundary of each section, wh
may be redefined as the origin ofs by multiplying A by an
appropriate exponential factor. From the equation forr8(s),
it follows that

A5S 1 1 1

v1 v2 v3

v1
2 v2

2 v3
2
D 21S r8~0!

r9~0!

r-~0!
D .

The vector of derivatives ofr is determined from the solu
tion in the neighboring piece by the matching conditio
given in Sec. III, where it was stated that the gradient, che
cal potential, and flux must all be continuous. That is,
quantitiesr8, Kr92 f 1 , and (Kr-2 f 2r8)G are continuous.
These quantities can be calculated from the neighboring
lution, given the value ofs at which it meets the discontinu
ity ~says5s1). If the discontinuity~in the mobility or poten-
tial! is at a valuer5r1, then s1 is given by inverting the
equationr(s1)5r1 which, unfortunately, cannot in gener
be done analytically.~However, the inversion is always pos
sible for the reasons explained in Sec. IV B.! Hence one
numerical step is required in the solution.@Of course the
special case of a double-well potential, with just one cu
discontinuity, is completely soluble analytically since the
bitrary origin ofs can be put at the cusp off (r).# Finally, the
boundary condition thatr→r` ass→1` results in the so-
lution for the highest-density section

A5S 2~r`2r1! v1

0

0
D

for negativeb ~condensation!, sincev1 is the only negative
root, and hencer8(s)52(r`2r1) v1 ev1s for s.0 and
r(0)5r1.

APPENDIX B: INTEGRAL SOLUTION
OF THE CAHN-HILLIARD EQUATION

In Sec. IV, the assertion was made that interfaces gen
cally contract when moving under condensation. This re
and its converse~that interfaces expand during evaporatio!
i-
e

o-

p
-

ri-
lt

will be derived now, using a systematic expansion of stea
state solutions of the Cahn-Hilliard equation in powers of
interface velocityv. As previously, we consider the one
dimensional Cahn-Hilliard equation in a frame moving
velocity v, in which distance is measured by the coordina
s; the order parameterr asymptotically approaches to a finit
constantr` ass→1`. However, in contrast to the analys
in Sec. III and Appendix A, no particular form will be as
sumed for the order-parameter potentialf (r) and likewise
the mobility G(r) will be an arbitrary function.

1. Inversion of variables

It is convenient to invert the equation so thatr becomes
the independent variable, and the equation is solved fos.
This means that the unspecified potentialf (r) and mobility
G(r) are now functions of theindependentvariable. Hence-
forth let the curvature constantK be set to unity without loss
of generality.~This is equivalent to measuring time in uni
of K and length in units ofAK.! After inversion, the full,
one-dimensional Cahn-Hilliard equation in a moving fram
may be written

]s

]t
5

]

]rF S ]s

]r D 21

G
]2

]r2H 1

2S ]s

]r D 22

2 f J G2v.

Clearly ~as is well known!, adding a linear term to the po
tential f (r) has no effect.

2. Integration of the steady-state equation

Let us now set the time derivative to zero in this movi
frame and integrate once with respect tor, to obtain the
steady-state equation

G~r!S ds

dr D 21 d2

dr2H 1

2S ds

dr D 22

2 f ~r!1lr1cJ 5~r2r`!v,

where the arbitrary linear term2(lr1c) has been explic-
itly added to f (r). Note that the constantl is equal to the
chemical potential in the asymptotically flat regio
l5m(`) ~rememberm is nonuniform in a moving inter-
face!. It can be confirmed that2vr` is the correct constan
of integration, given that the left-hand side of the abo
equation is simply the fluxj .

Let us defineh(r)[ds/dr, so that 1/h5¹r. Then inte-
grating with respect tor, we find

d

dr
~ 1

2 h222 f 1lr1c!5vE ~r2r`!h

G
dr1const.

It is easy to confirm that the left-hand side of this equation
the chemical potential, measured with respect to the valu
r` . Now consider the factors in the integrand. Asr→r` ,
r2r` tends to zero linearly, while it is expected~and con-
firmed in the special case of Appendix A! that h(r)→`
logarithmically. Hence the integrand vanishes asr→r` . So
the constant in the above equation is zero and we have

d

dr
~ 1

2 h222 f 1lr1c!52vE
r

r`~r82r`!

G~r8!
h~r8! dr8.
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Let us henceforth absorb the termslr1c into the definition
of f (r). @That is, the arbitrary linear part off (r) is defined
so that the potential has zero value and gradient atr` .#
Integrating by parts once gives the final result

h~r!5
1

A2 f ~r!

3F12
v

f ~r!
E

r

r`~r`2r8!~r82r!

G~r8!
h~r8! dr8G21/2

.

~B1!

Notice that the Cahn-Hilliard equation, in its differenti
form, is fourth order, but that this integral representation
the steady-state equation contains onlyone integration.

If h(r) is written as a power series inv, then the binomial
in Eq. ~B1! may be expanded and the formula iterated
produce a systematic series approximation forh to arbitrarily
high powers of the velocity. The power-series expansion
the steady-state solutions(r) is then obtained by integratio
as

s~r!5E h~r! dr.

Clearly the origin ofs ~and hence the constant of integratio!
is arbitrary.

3. First-order correction to the interfacial width

This method is now applied to find the first-order corre
tion to the widthDs of a moving interface, defined as th
distance between two points on the interface at which
densities have certain fixed valuesr1 andr2 ~which could be
the densities of the two maxima in a three-well potential,
example!. We find that

Ds5Ds01cv1O~v2!,

where

Ds05E
r1

r2 dr

A2 f ~r!

and

c5
1

4Er1

r2
dr f ~r!2 3/2E

r

r`
dr8 ~r`2r8!

3~r82r!G~r8!21f ~r8!21/2.

This last equation expresses the rate of change of widt
the interface with velocity,c in terms only of the two func-
tions that characterize the physics of the system: the b
f

f

-

e

r

of

lk

free-energy densityf (r) and the mobilityG(r). All factors
in the integrands of this expression are positive over
ranges of integration, soc is positive. Negative values ofv
correspond to growth of the asymptotically flat, dense reg
by condensation and positive values correspond to evap
tion. So, without assigning any special properties to the fu
tions f andG, it has been shown that the interface contra
(Ds,Ds0) during condensation and expands during eva
ration.

As mentioned at the end of Sec. IV,r` may vary from its
equilibrium value~i.e., the density at which phase 3 coexis
in equilibrium with phase 1 for a three-well potential!. In the
present section, a formalism has been developed by w
the solution for a moving interface is expanded about
v50 solution. Does this allow for variation inr`? The an-
swer is ‘‘yes’’ because there is in fact a whole family
v50 solutions with different values ofr` , of which the
equilibrium solution is just one member. The equilibriu
solution is the special member of this family for whichr
asymptotically approaches a finite constant ass→2`, rather
than growing exponentially~either positive or negative! and
thus remaining curved and having unphysical boundary c
ditions ats→2`. But, for our purposes, the whole famil
may be used since, as discussed in Sec. III, the left-h
boundary is not put at negative infinity.

APPENDIX C: CORRECTION TO THE DOUBLE-
TANGENT CONSTRUCTION FOR A MOVING

INTERFACE

The double-tangent construction illustrated in Fig. 5 giv
theequilibriumdensities of two coexisting phases. Recall
elementary derivation as follows@8#. In a uniformpart of the
system of volumeV, containingN particles, the local density
is r5N/V and the free energy isF5 f V. From these two
simple relations and the definitions of chemical poten
m5(]F/]N)V and pressureP52(]F/]V)N , it follows that
f 5mr2P, which is the equation of a straight line on a pl
of f versusr, with gradientm5 f 8(r) and intercept2P.
Given that two coexisting phases have equal chemical po
tials and pressures, it follows that the straight lines tangen
f (r) at the respective coexistent densities have equal gr
ents and intercepts. Hence they are the same line.

Consider now the nonequilibrium case of an interface
uniform motion at velocityv. By continuity, the flux at any
point on the interface isj 52(r`2r)v. In model B,
¹m52 j /G. Hence, integrating across the interface, the d
ference in chemical potential between the dense, asymp
cally uniform phase at positive infinity and any given pointA
is

Dm[m~`!2m~A!5vE
A

`~r`2r!

G
dx

from which the equilibrium result follows forv50.
Now let us consider the local quantityP[mr2 f ~which

reduces to the usual definition of pressure in a homogene
system!. With this definition,

¹P5r¹m2K¹2r¹r.
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Using again¹m52 j /G, and integrating gives

DP[P~`!2P~A!5F2
1

2
KS ]r

]xD 2G
A

`

2E
A

`r j

G
dx.

If the curvature part of the chemical potential is small
point A, this expression for the pressure difference becom

DP52
K

2F S j

G f 9
D 2G

A

`

2E
A

`r j

G
dx52E

A

`r j

G
dx1O~v2!.

So the equality of chemical potentials and pressures acro
static interface, which gives rise to the double-tangent c
struction, has the following corrections, to first order inv,
for a moving interface:
e,

.

5

t
s

s a
-

Dm5vE
A

`r`2r

G
dx,

DP'vE
A

`~r`2r!r

G
dx.

Notice that both corrections depend on the range of integ
tion, i.e., on position of the pointA. This is no surprise since
there must be gradients in the pressure and chemical po
tial outside the interface in order to induce motion. Noti
also that both coefficients ofv are positive, soDm andDP
are of the same sign asv. This is negative for condensatio
and positive for evaporation. So, as expected, during cond
sation the pressure difference and chemical potential dif
ence across an interface are smaller than at equilibrium.
v.
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